大学数学线性代数复习资料
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。下面和小编一起来看大学数学线性代数复习资料,希望有所帮助!
第一章 行列式
本章的重点是行列式的计算,主要有两种类型的题目:数值型行列式的计算和抽象型行列式的计算。数值型行列式的计算不会以单独题目的形式考查,但是在解决线性方程组求解问题以及特征值与特征向量的问题时均涉及到数值型行列式的计算;而抽象型行列式的计算问题会以填空题的形式展现,在历年考研真题中可以找到有关抽象型行列式的计算问题。
因此,在复习期间行列式这块要做到利用行列式的性质及展开定理熟练的、准确的计算出数值型行列式的值,不论是高阶的还是低阶的都要会计算。另外还要会综合后面的知识会计算简单的抽象行列式的值。
第二章 矩阵
本章需要重点掌握的基本概念有可逆矩阵、伴随矩阵、分块矩阵和初等矩阵,可逆阵与伴随矩阵的相关性质也很重要,也是需要掌握的。除了这些就是矩阵的基本运算,可以将矩阵的运算分为两个层次:
1、矩阵的符号运算;
2、具体矩阵的数值运算.
矩阵的符号运算就是利用相关矩阵的性质对给出的矩阵等式进行化简,而具体矩阵的数值运算主要指矩阵的乘法运算、求逆运算等。
第三章 向量
本章的重点有:
1、向量组的线性相关性证明、线性表出等问题,解决此类问题的关键在于深刻理解向量组的线性相关性概念,掌握线性相关性的几个相关定理,另外还要注意推证过程中逻辑的正确性,还要善于使用反证法。
2、向量组的极大无关组、等价向量组、向量组及矩阵秩的.概念,以及它们之间的相互关系。要求会用矩阵的初等变换求向量组的极大线性无关组以及向量组或者矩阵的秩。
第四章 线性方程组
本章的重点是利用向量这个工具解决线性方程组解的判定及解的结构问题。题目基本没有难度,但是大家在复习的时候要注意将向量与线性方程组两章的知识内容联系起来,学会融会贯通。
第五章 特征值与特征向量
本章的基本要求有三点:
1、要会求特征值、特征向量
对于具体给定的数值型矩阵,一般方法是通过特征方程∣λE-A∣=0求出特征值,然后通过求解齐次线性方程组(λE-A)ξ=0的非零解得出对应特征值的特征向量,而对于抽象的矩阵来说,在求特征值时主要考虑利用定义Aξ=λξ,另外还要注意特征值与特征向量的性质及其应用。
2、矩阵的相似对角化问题
要求掌握一般矩阵相似对角化的条件,但是重点是实对称矩阵的相似对角化,即实对称矩阵的正交相似于对角阵。这块的知识出题比较灵活,可直接出题,也可以根据矩阵A的特征值、特征向量来确定矩阵A中的参数或者确定矩阵A。另外由于实对称矩阵不同特征值的特征向量是相互正交的,这样还可以由已知特征值λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出矩阵A。
3、相似对角化之后的应用,主要是利用矩阵的相似对角化计算行列式或者求矩阵的方幂。
第六章 二次型
二次型这一章的重点实质还是实对称矩阵的正交相似对角化问题。这一章节要求大家掌握二次型的矩阵表示,用矩阵的方法研究二次型的问题主要有两个:
1、化二次型为标准形
主要是利用正交变换法化二次型为标准型,这是考研数学线性代数的重点大题题型,考生一定要掌握其做题的基本步骤。化二次型为标准型的实质也是实对称矩阵的正交相似对角化问题。
2、二次型的正定性问题
这一知识点主要考查小题。对具体的数值二次型,一般可用顺序主子式是否全部大于零来判别,而抽象矩阵的正定性判断可以通过利用标准形,规范形,特征值等得到证明,这时应熟悉二次型正定有关的充分条件和必要条件。